Sunday, 15 October 2017

At last…a Giant Anteater

Who amongst those of us of a certain age can forget the film and photographs of a Giant Anteater and of the visit to Edward ‘Tiny’ McTurk's ranch in BBC’s Zoo Quest to Guiana in 1955 or in the book of that name by David Attenborough?

Sadly, when we went to the McTurk’s Karanambu Ranch* in 2006 there were no Giant Anteaters (Myrmecophaga tridactyla) around, although further north some of our party going birdwatching one way (while we were similarly occupied in the opposite direction) did see one crossing the path through the forest.

In the right (for anteaters) part of South America again in September would we see eventually see a Giant Anteater in the wild for sufficiently long to appreciate these fantastic animals?




This one was at Pouso Alegre, a lodge at the end of a turning from the Transpantaneira Highway between Poconé and Porto Jofre in the northern Pantanal of Brazil. We were on a Naturetrek Tour entitled ‘Just Jaguars’ but we saw a lot more than just jaguars (more on them in a later post). Our personal list of mammals seen totalled 24 species (the number for the group as a whole was 26) with 6 reptiles and 156 birds. A great trip led by Marcos Felix.

*I was sorry to see that Diane McTurk, our host at Karanambu and known for her work on rescuing, rearing and rehabilitating giant otters orphaned by hunters as well as campaigning for conservation and promoting tourism, died in December 2016 aged 84.

Thursday, 12 October 2017

On making a living as a naturalist and on Galapagos tortoises in the 19th Century

Archives of Natural History, the journal of the Society for the History of Natural History, always contains articles that inform and entertain. The latest issue does not disappoint.

The question of how people with an abiding interest in animals and wildlife generally found jobs that satisfied that interest when there was no career path to follow or any form of established employment in the offing has always interested me. In the late 19th and  20th centuries there were very few graduates and very few graduate jobs. Some worked up their interest and started small zoos; others worked as collectors of dead or alive specimens to satisfy the craze for natural history that gripped Victorian Britain, or as animal dealers sometimes added on to a pet shop, while others worked in publishing.

In the first paper in the latest issue Susannah Gibson has written The careering naturalists: creating career paths in natural history, 1790-1830. She describes the life of Edward Donovan (1768-1848) who carved a niche for himself as a ‘writer, artist, engraver, collector, curator and popularizer of natural history’. Donovan wrote and illustrated volumes of works on mainly British insects, birds, shells and plants. He also founded a museum in London to display his collections. He was highly successful, other than with his museum which lost money but seems eventually to have been diddled out of his earnings by the bookseller (then, as in Samuel Pepys’s time, in St Paul’s Churchyard) he had collaborated with throughout. The sums involved were, for the day, enormous at £60,000-£70,000. The only way he could attempt to get his money was through the Court of Chancery, an enormously expensive process. He tried to raise the money from his subscribers but he failed and he died with the matter unresolved.



Gibson contrasts Donovan’s career with that of George Shaw (1751-1813) who had degrees from Oxford and Edinburgh. He got a job at the Natural History Museum so could write books while being paid by the museum. By contrast, Alexander Macleay (1767-1848) became a civil servant in the Transport Office and pursued his interests as an amateur; he made an extensive collection, became Secretary of the Linnean Society, and then, when appointed Colonial Secretary in New South Wales became an important figure in Australian natural history. Money was a great problem to Macleay as well as to Donovan. They and other naturalists spent a lot of money buying specimens for their collections. In the end many collections, including those of Donovan and Macleay had to be sold in whole or in part to stave off bankruptcy. The sale of Donovan’s was by auction of close on 8000 lots over 65 days.

The second paper by Storrs Olson, The early scientific history of the Galapagos tortoises, deals with just that, up to and including the voyage of HMS Beagle in 1835. Olson takes to task those authors who have repeated the myth that the differences between the tortoises from different island contributed to Darwin’s thinking that led to the Origin of Species. He concludes (after naming the culprits in references):

Contrary to the mythology still being perpetuated today, Galapagos tortoises played almost no role in the development of Darwin’s evolutionary thinking. It would be nearly eight decades after the voyage of the Beagle before appreciation of the full extent of diversity of tortoises in the Galapagos would be revealed following the expedition of the California Academy of Sciences in 1905-1906.


Giant tortoises from the Cerro Azul population at the captive breeding centre
on Isabela (Albemarle). This form is now being treated as a separare species,
Chelonoidis vicina. 20 January 2013


Gibson S. 2017. The careering naturalists: creating career paths in natural history, 1790–1830. Archives of Natural History 44, 195-214 https://doi.org/10.3366/anh.2017.0444

Olson SL. 2017. The early scientific history of Galapagos tortoises. Archives of Natural History 44, 241-258 https://doi.org/10.3366/anh.2017.0447

Tuesday, 29 August 2017

Another Zoo Quest to Komodo: the Burden Expedition of 1926

The best-publicised expedition to Komodo in the early decades of the 20th Century was that led by William Douglas Burden (1898-1978). He offered to use his own money—he was a scion of the Vanderbilt family—to collect for the American Museum of Natural History. Not surprisingly his offer was accepted. He also persuaded the Dutch Government to carry him there on their official yacht,  the S.S. Dog. He gathered, along with his first wife, Katharine Curtin White (1903-1976)(they were divorced in 1939), a big-game hunter and Emmett Reid Dunn (1894-1956), then at Smith College, as herpetologist. They called at Singapore where a cinematographer joined along with fifteen Malay helpers.

The expedition spent five weeks on Komodo. Pretty sensational stories were published of encounters with feral water buffalo, poisonous snakes and of Mrs Burden coming between a dragon and its prey. So sensational that when Burden told his story to a Hollywood producer, the Komodo Dragon morphed into a giant ape, Mrs Burden into Fay Wray, and the whole tale into King Kong which hit the cinemas in 1933.

Burden wrote an article for National Geographic Magazine in 1927. The text is extremely short and that dealing with the Komodo part of their expedition even shorter. This is a photograph from that article:






Both Burden and Dunn produced more sober accounts of the expedition and of the Komodo Dragons that were encountered and collected dead and alive. Twelve were taken back dead, for the museum (a museum that never knowingly under-collected), where some can be seen today, and two alive for the Bronx Zoo in New York. The live ones reached New York alive but only just; one died soon after arrival, the other within two months. Long sea voyages at temperatures well below the preferred body temperature soon saw them off.

Five papers on the results of the expedition were written by Burden and Dunn; they appeared in American Museum Novitates. Two, one by Burden and one by Dunn, are concerned with the Komodo Dragon. Dunn’s paper concentrated on the size of males and females, together with the relationships of the various varanid species both extant and extinct. Burden covered such topics as how Dragons came to be be on the Komodo island group and Flores, their population, habitat, feeding and behaviour.

Burden led a number of collecting expeditions for the Museum and has been described as ‘geologist, naturalist, hunter, filmmaker and author’. Of particular note here is that he went on to be a co-founder, with Ilya Tolstoy (grandson of Leo), Cornelius Vanderbilt Whitney and Sherman Pratt of Marineland in 1938. Originally called Marine Studios and intended for underwater filming, it became the famous public aquarium reaching its zenith of popularity in the 1950s and 60s. Decades of decline followed and although re-launched on a much smaller scale, the original 1938 oceanarium has been demolished.

Dunn was a well-known herpetologist. He taught at Smith College, a liberal arts college for women, in Massachusetts from 1916 until 1928. He was awarded a Harvard PhD in 1921 for work done at the Museum of Comparative Zoology. A Guggenheim Fellowship after Smith College led to Haverford College in Pennsylvania; he became Professor of Biology in 1934. He was President of the American Society of Ichthyologists and Herpetologists in 1930-31.

The Eponym Dictionary of Reptiles* has a wonderful story about Dunn. During World War I he applied to become an officer in the U.S. army. He was rejected because his weekend pursuit of salamanders and snakes was considered ‘unbecoming in an officer and a gentleman’. He joined the U.S. Navy instead.


*Beolens B, Watkins M, Grayson M. 2011. The Eponym Dictionary of Reptiles. Baltimore: Johns Hopkins University Press.

Burden WD. 1927. Stalking the dragon lizard on the island of Komodo. National Geographic Magazine 52 (2, August 1927), 216-233

Burden WD. 1927. Dragon Lizards of Komodo. New York: Putnam

Burden WD. 1927. Results of the Douglas Burden Expedition to the island of Komodo. V.—Observations on the habits and distribution of  Varanus komodoensis Ouwens. American Museum Novitates 316, 1-10

Dunn ER. 1927. Results of the Douglas Burden Expedition to the island of Komodo. 1.—Notes on Varanus komodoensis. American Museum Novitates 286, 1-10

Lutz D, Lutz JM. 1997. The Living Dragon. 2nd edition. Salem, Oregon: DIMI Press

There is a lot of information on Burden’s expedition and on Burden himself available. A simple Google search suffices but the sources here, here and here, in addition to those above, have proved particularly useful.



Friday, 25 August 2017

Lough Ine (Hyne) before Kitching and Ebling: Louis Renouf


Louis Renouf (from Kearney*)
The first to develop Lough Ine (or Hyne) in southern Ireland as a marine biological research station was Louis Percy Watt Renouf (1887-1968) while he was Professor of Zoology at University College, Cork between 1922 and 1954. The whole story is told in Terri Kearney’s book*. During the late 1920s and 30s Renouf promoted Lough Ine as a place for visiting research workers, having succeeded in erecting first a packing case and then, in 1928, an old army hut as a laboratory. He attracted some big names in British biology including Nellie Eales (1889-1989) and Julian Huxley, who published the work he did there on regeneration in the polychaete, Sabella, in 1933.

I came across an article in Zoo magazine (soon to be renamed Animal and Zoo Magazine)(Volume 2  (3), August 1937) which also contained a map of Lough Ine. Renouf was a regular contributor to the Zoological Society of London’s magazine (Huxley, as Secretary, was Advisory Editor) and was listed as a patron of the ‘Zoo Club’ run by the magazine and the Society; he was described as ‘President of the Guild of Catholic Biology’ and appears to have been one of that church’s adherents who was trying from the inside to persuade the catholic hierarchy that evolution was something they should not oppose; in modern parlance he was an accommodationist.





Animal and Zoo Magazine, June 1938 (3(1)) contained brief biographies of contributors between June 1937 and June 1938. Here is Renouf’s entry (the editors or printers omitted his initial ‘L’):




With the arrival of the Kitching-Ebling expeditions each summer from the late 1940’s there appear (from the brief summaries of the archived letters between Kitching and Ebling) to have been tensions with Renouf over finances and between Renouf and University College, Cork. It appears that Kitching bought land on the lough for a hut to overcome the problem of paying what he thought were excessive fees to use the facilities provided by Renouf. My impression is that Ebling and Renouf remained on fairly friendly terms, with John Ebling writing Renouf’s obituary for the Royal Society of Edinburgh (Renouf had been elected in 1936).

Whatever, the difficulties Renouf’s efforts at Lough Ine were completely overshadowed, scientifically and organisationally from the early 1950s by the Kitching-Ebling show.

There is no doubt though, that it was Renouf, who was told of Lough Ine and its potential on his arrival in Cork in 1922 who worked under difficult conditions—financial, political and geographical—to get Lough Ine up and running as one of the places for marine biology.

Lough Ine was designated as Europe’s first Marine Nature Reserve in 1981.



Julian Huxley (centre right) at Lough Ine in 1933 (from Kearney*)



* Kearney T. 2011. Lough Hyne. The Marine Researchers - in Pictures. Skibereen Heritage Centre. Obtainable from here.

Ebling FJG. 1969. Louis Percy Renouf BA, Dip Agric (Cantab), DSc (Nat Univ Ireland). MRIA. Yearbook of the Royal Society of Edinburgh 1967-68, 54-55.

Sunday, 20 August 2017

1957-2017: The Diamond Jubilee of Salt Glands: Knut Schmidt-Nielsen’s co-authors

In the last post I covered the history of the discovery of salt glands in birds by Knut Schmidt-Nielsen.  But who were his collaborators in the first salt-gland research, Carl Barker Jörgensen and Humio Osaki at the start, and then Ragnar Fänge?

Carl Christian Barker Jörgensen (1915-2007) was well known internationally as an animal physiologist but the only biography I have been able to find is in Danish. Therefore, Google Translate has had to come to my aid.. In 1940 he received Copenhagen University’s gold medal in zoology. He then assisted Holger Valdemar Brøndsted (who later had a chair in zoology at Copenhagen) at a school in Birkerød from 1941 until 1945 when the war ended. Jörgensen returned to Copenhagen and became assistant to Hans Ussing, of the eponymous Ussing Chamber, who was entering his heyday as the master of transcellular ion and water transport through his work on frog skin. Jörgensen himself looked at the effects of posterior pituitary hormones on salt and water movements.

Jörgensen remained at Copenhagen where he was professor from 1965 until he retired in 1985, pursuing a number of interests from suspension feeding, through salt and water metabolism to reproductive endocrinology. Most of his research was on the Common Toad, Bufo bufo. During the 1990s he published three major reviews including one on on the function of the bladder—huge in tortoises—from a historical perspective.

Humio Osaki (1916-2005) was in later life a medical protozoologist. In 1957 he was a research associate at Duke University working with Bodil and Knut Schmidt-Nielsen. How he came to be there I do not know because he had qualified in medicine in 1942, served as a medical officer in the Imperial Japanese Army until 1946 and then as a hospital clinician. After Duke University he was in academic medicine in Japan, finally at Tokushima and Kochi medical schools. As well as the paper on salt glands, Osaki also published with Bodil Schmidt-Nielsen on urea excretion in sheep, one of the key steps in the discovery of urea secretion (as opposed to simple filtration) by the mammalian kidney. Another co-author on Bodil’s urea paper is Roberta O’Dell who can be seen in a photograph helping in the salt-gland work with Osaki and Knut.


Humio Osaki (centre) with Roberta O'Dell and Knut
Schmidt-Nielsen working on salt glands in a gull at
Mount Desert Island(from Evans DH. 2015. Marine
Physiology Down East: The Story of Mt Desert Island
Biological Laboratory. New York: Springer

Humio Osaki working with Bodil
Schmidt-Nielsen on urea excretion (from here)


In the second phase of the salt-gland work, Ragnar Fänge (1920-1999) looms large. Another well-known animal physiologist who worked mainly on fish, he was another Scandinavian, this time Swedish. However, I have been able to find very little about him. I met him a few times but discovered nothing of his background or how he came to be involved with Knut Schmidt-Nielsen and salt glands—and I also forgot to ask Knut the same question. He was professor of zoophysiology at the University of Gothenburg in Sweden from 1962 until 1985.

And so a Norwegian (KS-N), a Dane (CBJ), a Swede (RF) and a Japanese (HO) made history.

Tuesday, 15 August 2017

1957-2017: The Diamond Jubilee of Salt Glands: Knut Schmidt-Nielsen's Major Discovery

As i wrote in this post on Bill Sladen, this year, 2017, marks the 60th anniversary of the announcement of the discovery of salt glands by Knut Schmidt-Nielsen and the publication of an abstract describing the work in Federation Proceedings. The talk was given to the American Physiological Society at the Federation of American Societies for Experimental Biology meeting in Spring 1957. A search shows this meeting was held in Chicago on 15-19 April. I also found from the bibliography published alongside his obituary as a Foreign Member of the Royal Society that he had also given a paper in 1957 to the Elisha Mitchell Scientific Society in North Carolina and an abstract was published* (which I have not seen); he was by then based at Duke University in North Carolina.

Salt glands are still fascinating: they turn on within minutes of excess salt being detected in the blood; although small in size they can secrete concentrated salt solutions at a very high rate, and to support this blood flow through them is amongst the highest recorded in the animal kingdom. Even now there remains much to be known about them, from the ecological level, the extent to which the salt glands are used by different birds in different habitats, for example, right down to secretory mechanism at the cellular and molecular levels.

The story of the discovery of salt glands is in Knut’s autobiography, The Camel’s Nose, published in 1998. His curiosity was aroused when asked to read the proofs of Nobel prize-winning (and soon to be his father-in-law) August Krogh’s book on osmotic regulation. The story actually begins  in 1939. He wrote:

     I learned a great deal from reading the proofs for Krogh's osmoregulation book. One problem that especially intrigued me was how marine birds survive with no fresh water to drink. In search of an answer to this question, I developed methods I could use under primitive conditions, and at the end of the spring term in 1939, after securing permission from the Norwegian authorities to capture birds, I set off for the coast of northern Norway to try to solve the problem. This journey was the first of what would become a long series of field studies around the world, ranging from the Sahara Desert to the Amazon River, seeking answers to problems of how animals survive in hostile environments. 
     In mid-June 1939 I arrived at Röst, a small island in northern Norway, off the Lofoten chain and facing the Arctic Ocean. Millions of auks, puffins, and gulls nest on vertical cliffs that rise out of the ocean beyond Röst. The birds seek their food at sea, and except for rainfall there is no fresh water. Do they drink sea water? I wanted to find out. 
     It was already known how whales and seals can manage. If they drink sea water, the extra salt is excreted by the kidneys. Whale kidneys are powerful and can produce urine more concentrated than sea water. Although no one knows whether whales and seals actually drink sea water, they could readily eliminate the excess salt… 
     Humans have less powerful kidneys than seals and whales. A human castaway at sea who drinks sea water merely hastens the approach of death because the kidneys are unable to excrete the excess salts. Birds seemingly are worse off; their kidneys are even less efficient than humans' in eliminating salts. The problem was to find out if birds get sufficient water in their food, or if they drink sea water and somehow are able to excrete the salts… 
     During the summer I examined skuas, auks, puffins, and kittiwake gulls. The salt concentration in their guts was invariably low and showed no evidence that any of them drank sea water. I also examined five seals shot by a local fisherman; the results were similar. Neither the salt nor magnesium content in the seals' stomachs and intestines suggested that they had drunk sea water. 
     So far I had only negative evidence. The next step was to find out what happens when a bird actually swallows sea water. I captured a few kittiwake gulls and caged them in empty orange crates. They greedily devoured the fish I fed them. Fish doesn't have a high salt content, so I gave one of the birds an ample volume of sea water by stomach tube. If the kidneys excreted the salts, there should be a high salt concentration in the urine. 
     The bird produced copious volumes of urine, but to my amazement the urine had little salt in it. I repeated the experiment with other birds, and again the urine was nearly salt-free. Wondering if my analytical methods were wrong, I tested every step with solutions of known salt content; my methods were 100 percent correct. 
     No matter how much sea water I gave the birds, little salt appeared in the urine. Could it be that the birds retained the salts? If so, the salt concentration in the blood should increase. But my analysis of their blood showed no elevated salt levels. Where was the salt going? I knew it had entered the body, yet I couldn't find it in the urine or in the blood. It seemed that the salt had simply disappeared. 
     At the end of the summer I returned to Copenhagen, disappointed that I had found no solution to the original problem. I was anxious to talk to Dr. P. B. Rehberg, a prominent renal physiologist, who usually gave young scientists excellent advice. However, he said little, and I felt that he perhaps thought I hadn't done a very good job; he didn't even look at my meticulously kept data books. In desperation I suggested that if the salt doesn't come out the rear of the bird, it must somehow come out the front. Rehberg didn't comment… 
     I wanted to tackle this problem again, but the war intervened, and then other projects took all my time. Not until eighteen years later, in 1957 [actually 1956], did I return to the study of marine birds. As I had suggested to Rehberg, a salt load is indeed eliminated from the front end of the bird, as a salty fluid dripping from its beak. Then I understood why I hadn't noticed the phenomenon when I was on Röst. The primitive conditions where I worked, the orange crates and the rough wooden floor, made it difficult to see drops of fluid the birds shook from their beaks. That summer in Norway, I thought the few drops I noticed were no more than a little sea water regurgitated by the bird.
    
The research that led to the discovery of salt glands was done during the summer of 1956 at Mount Desert Island Biological Laboratory (MDIBL), Bar Harbor, Maine, then a gathering place for those studying the kidney and renal excretion during the long vacation, including Knut’s then wife, Bodil, August Krogh’s daughter.

Knut took up the story again in The Camel’s Nose:

     For the study of marine birds I asked two postdoctoral collaborators to join me in Maine: Humio Osaki from Japan and a former classmate of mine from Denmark, Carl Barker Jörgensen. We caught some young cormorants, and to find out what effect sea water has on salt excretion, I gave one of them a liberal amount by stomach tube and placed the bird in a carefully cleaned plastic container. Within a minute or two I made the fastest scientific discovery I ever made. I noticed that the bird, with a quick movement of the head, shook off droplets of fluid that appeared at the tip of its beak. I sampled the clear liquid with a micropipette; it gave a massive precipitate with silver nitrate, revealing a high concentration of chloride. We were astounded, but the result confirmed what I had suggested decades before—that if salts do not come out one end of the bird, they must come out the other. 
     The very salty secretion is produced by glands in the bird's head and drips from the tip of the beak. Thus, if the birds drink sea water, the excess salt is eliminated, leaving a net gain of free water. Whether marine birds in the wild actually drink sea water is a question that is difficult to answer. Nevertheless, much of their food has a salt content high enough to necessitate the elimination of excess salt by the glands we had discovered. For simplicity we decided to call them salt glands. Our discovery received a great deal of attention from physiologists as well as the popular press, for no such gland was known in any animal, and it solved a long-standing problem. 
     I continued these studies over the next two years, both at Duke and in Maine. All marine birds we examined—gulls, pelicans, petrels, eider ducks, and so on—use the same mechanism to excrete excess salt. I had a marvelous collaborator in a Swedish friend, the animal physiologist Ragnar Fänge, who described the detailed anatomy of the salt gland and refined our understanding of its function.


Knut Schmidt-Nielsen working on sea birds at MDIBL
(from here)


Schmidt-Nielsen spent the following summers until 1959 at MDIBL, adding to the previous work. The history also showed that he worked with the MDIBL stalwarts, William L Doyle and Thomas H Maren but they published their salt-gland work without Knut as a co-author. Doyle published the first electron micrographs of the gland. Others there also published on salt glands later, Hubert and Mabel Frings, for example. 

The discovery of salt glands in birds and then in reptiles was just one part of Knut Schmidt-Nielsen’s series of seminal contributions to How Animals Work (the title of one of his books). Obituaries by the late Steven Vogel (1940-2015) and Ewald Weibel can be found here and here.

As Steven Vogel (1940-2015) wrote in Knut’s obituary, in discussing the discovery of salt glands, ‘…the work has taken its place as common knowledge with only rare reference to the seminal reports’. I can only add that, sadly, not only are the references to the seminal reports rare but that the information given on salt glands, particularly in blogs and websites, is so often completely, utterly and completely wrong that it can only be classified as drivel.

At a symposium in Sandbjerg, Denmark to celebrate Knut Schmidt-Nielsen’s 65th birthday in July 1980 there were seven co-authors (out of a possible ten) of his papers on salt glands that were all published between 1957 and 1964 (Ragnar Fänge (1920-1999), Carl Barker Jörgensen (1915-2007) , Maryanne Robinson (Maryanne Robinson Hughes), Arieh Borut, Eugene C. Crawford, Stephen Thesleff, Francis G Carey (1931-1994)). In addition, two of us there (Dennis Bellamy and me) had worked on salt glands later. All the participants and contributors to the proceedings, entitled A Companion to Animal Physiology, received a commemorative medal which show Schmidt-Nielsen’s famous books and the animals with which he was most associated: kangaroo rats, gulls, camels, frogs and snails.


5th International Symposium on Comparative Physiology, Sandbjerg, Denmark, July 1980
To commemorate Knut Schmidt-Nielsen's 65th birthday




And there were Golden Orioles in the trees.


Taylor CR, Johansen K, Bolis L (editors). 1982. A Companion to Animal Physiology: Perspectives. Cambridge: Cambridge University Press

Evans DH. 2015. Marine Physiology Down East: The Story of My Desert Island Biological Laboratory. New York: Springer

*Schmidt-Nielsen K. 1957. Extrarenal excretion of salt in birds. J Elisha Mitchell Scientific Society 73, 235

Saturday, 12 August 2017

The Kitching-Ebling split, Lough Ine (Hyne) and Reflections on a Summer Sea

Scientific divorces, whether of long-term collaborators, scientist and technician or scientist and past research student,  are horrendous—both to both the parties involved and to onlookers and friends. The reasons are often obscure and may take years to come to the boil. Jealousy, perceived slights, perceptions of unequal work load can all come into the mix.

One of the saddest cases was that of Jack Kitching* and John Ebling†. Their exploits each summer in exploring the ecology of Lough Ine, or Hyne as it is now known, a sea-loch in Ireland, with zoology students initially from Bristol and then, when Kitching moved, from the University of East Anglia, was known more widely and it was a constant feature in both of their lives from 1937 and 1938. Kitching was then a young lecturer and Ebling an undergraduate. They published many papers together and pioneered an experimental approach to ecology. Ebling moved from Bristol, had a short spell in Hull and then established himself in Sheffield where he rose through the ranks to the second professorship in zoology—then a vary rare promotion. Throughout, he headed the logistics of getting the equipment and people to Ireland each year and organising the supplies of food and alcohol. There seems no doubt, though, that Kitching regarded Loch Ine as his show and as his territory.


The Kitching and Ebling Summer Show at Loch Ine was captured superbly by Trevor Norton’s 2001 book, Reflections on a Summer Sea. He began it by quoting a letter he had written to Jack Kitching in 1994:

I have begun to write the story of Lough Ine. I want to tell of the stunning scenery and terrible history of the place, the myth and the magic, and to recapture all the fun and excitement we had in those summers when we waded and dived in the lough. Perhaps I can convey the wonder I felt when I first came to Lough Ine in the 1960s, and maybe slip in a bit of marine biology too…

and continued:

This is the story of the menagerie of eccentric and talented ecologists who, as a hobby, established a privately owned field laboratory in south-west Ireland and took part in one of the most unlikely projects in the history of marine biology.

I heard of the Kitching-Ebling split around 1987 from John Ebling himself. I found him or, more correctly, heard him, holding forth in the Staff Club at Sheffield in, I think 1987 or ’88. I left my host and went over to talk to him. In our student years in the 1960s, John had waxed lyrical about the summers on Lough Ine and so I asked him if he was still going. ‘No’, was the reply and he went on to explain that Kitching had cut all ties with him some years earlier and that he was no longer welcome. He was clearly distressed and utterly bewildered about the whole affair. We moved on to pleasanter matters and I left him to resume his conversation. That was the last time I saw him.

Trevor Norton saw at close hand the whole relationship between Kitching and Ebling and the eventual break up. The immediate cause appeared to be Kitching’s proprietorial attitude to Lough Ine and his attempting to hang on in research after his retirement against a background of tightening funding and lack of recognition of the importance of work there. It would also seem that Kitching came to resent his former student’s success in other fields, for John was at home with errant polychaetes, moulting patterns of mammals, hormonal effects on the skin, clinical dermatology and the effects of cosmetics.

So while it seems pretty clear that John Ebling was the injured party, as was Trevor Norton himself when he disagreed with Kitching on the direction the research should take, there did come a sort of and rather sad rapprochement. Trevor described a symposium in Cork in 1990 on the research at Lough Ine. Kitching and Ebling were both invited:

Although it was a relief to John to have an invitation and a chance to visit the lough, he was nervous about meeting Jack again. He needn’t have been, for Jack was no longer formidable. John was a ebullient as ever, but a stroke had stolen Jack’s vigour. He looked and sounded frail, a ghost of his old self. I feared his lecture might be a disaster, but on stage he rose to the occasion and spoke well. I saw John helping him across the road. They were chatting, perhaps about old times.

There Trevor left it and so I was delighted to find that a book of photographs illustrating the history of the people who made Lough Ine famous—now the subject of over 450 scientific publications had been published in 2011. Many of the photographs are Trevor Norton’s but it covers work from 1885, when the first studies of the lough were made, until 2010. When I received my copy I was delighted to recognise people I had met and worked alongside in parallel universes without knowing they had spent one or more summers there.

I cannot help but end with a John Ebling story. Trevor Norton explains how Jack Kitching disapproved of John’s ribald sense of humour especially in front of the students, “these tender plants”. My abiding memory is of Venice at Easter 1964. We had arrived by bus from Rovinj where we were being exposed to a marine biology field trip (Lough Ine lite is the best description I can think of with hindsight). The bus journey had taken several hours and we were dropped off at a vaporetto-stop where we found public lavatories before heading for St Mark’s Square. Italy at that time had the lira and inflation had led to massive numbers of lira being needed for everything. The relatively small number of men and the larger number of women lined up with John heading the queue (student prostates were smaller and bladders possibly bigger) to pay and enter. After several minutes inside he re-appeared. ‘I am reminded of that old rhyme written behind the door in gents’ lavatories’, he said. And continued:

Here I sit, broken hearted, 
Paid two-thousand lira and only farted.

I cannot enter a public lavatory anywhere in Europe without repeating that incantation. Kitching would not have been amused.

These are photographs from Terri Kearney's superb book of photographs:


Jack Kitching on his first visit in 1938
Ebling and Kitching on the front row at the conference in Cork when they met again in 1990

*John (“Jack”) Alwyne Kitching OBE FRS (1908-1996)
†Francis John Govier Ebling (1918-1992)

Norton T. 2001. Reflections on a Summer Sea. Century (paperback 2002, Arrow Books)

Kearney T. 2011. Lough Hyne. The Marine Researchers - in Pictures. Skibereen Heritage Centre. Obtainable from here.